Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
|
|
---|---|---|
Page(s) | 925 - 954 | |
DOI | https://doi.org/10.1051/m2an/2025008 | |
Published online | 02 April 2025 |
- D.A. Allwood, G. Xiong, M.D. Cooke, C.C. Faulkner, D. Atkinson, N. Vernier and R.P. Cowburn, Submicrometer ferromagnetic NOT gate and shift register. Science 296 (2002) 2003–2006. [Google Scholar]
- F. Alouges and S. Labbé, Convergence of a ferromagnetic film model. C. R. Math. Acad. Sci. Paris 344 (2007) 77–82. [Google Scholar]
- F. Alouges, T. Rivière and S. Serfaty, Néel and cross-tie wall energies for planar micromagnetic configurations. A tribute to J. L. Lions. ESAIM Control Optim. Calc. Var. 8 (2002) 31–68. [MathSciNet] [Google Scholar]
- A. Al Sayed, G. Carbou and S. Labbé, Asymptotic model for twisted, bent wires with electric current. Z. Angew. Math. Phys. 70 (2019) 15. [Google Scholar]
- G. Carbou, Thin layers in micromagnetism. Math. Models Meth. Appl. Sci. 11 (2001) 1529–1546. [Google Scholar]
- G. Carbou, Domain walls dynamics for one-dimensional models of ferromagnetic nanowires. Differ. Integral Equ. 26 (2013) 201–236. [Google Scholar]
- G. Carbou and S. Labbé, Stability for static walls in ferromagnetic nanowires. Discrete Contin. Dyn. Syst. Ser. B 6 (2006) 273–290. [Google Scholar]
- G. Carbou and S. Labbé, Stabilization of walls for nano-wires of finite length. ESAIM Control Optim. Calc. Var. 18 (2012) 1–21. [MathSciNet] [Google Scholar]
- G. Carbou, S. Labbé and E. Trélat, Control of traveling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S 1 (2008) 51–59. [Google Scholar]
- A. DeSimone, R. Kohn, S. Müller and F. Otto, Repulsive interaction of Néel walls, and the internal length scale of the cross-tie wall. Multiscale Model. Simul. 1 (2003) 57–104. [MathSciNet] [Google Scholar]
- A. DeSimone, R. Kohn, S. Müller, F. Otto and R. Sch¨afer, Two dimensional modelling of soft ferromagnetic films. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001) 2983–2991. [Google Scholar]
- V.O. Dolocan, Domain wall pinning and interaction in rough cylindrical nanowires. Appl. Phys. Lett. 105 (2014) 162401. [Google Scholar]
- S. Fukami, M. Yamanouchi, S. Ikeda and H. Ohno, Depinning probability of a magnetic domain wall in nanowires by spin-polarized currents. Nat. Commun. 4 (2013) 2293. [CrossRef] [Google Scholar]
- A. Gaudiello and R. Hadiji, Ferromagnetic thin multi-structures. J. Differ. Equ. 257 (2014) 1591–1622. [Google Scholar]
- A. Gaudiello and K. Hamdache, A reduced model for the polarization in a ferroelectric thin wire. NoDEA Nonlineal Differ. Equ. Appl. 22 (2015) 1883–1896. [Google Scholar]
- J.W. Goertz, G. Ziemys, I. Eichwald, M. Becherer, H.J.M. Swagten and S.B.-V. Gamm, Domain wall depinning from notches using combined in- and out-of-plane magnetic fields. AIP Adv. 6 (2016) 056407. [Google Scholar]
- A. Goussev, J.M. Robbins and V. Slastikov, Domain wall motion in thin ferromagnetic nanotubes: analytic results. EPL 105 (2014) 67006. [Google Scholar]
- O. Guès and F. Sueur, On 3D domain walls for the Landau–Lifshitz equations. Dyn. Part. Differ. Equ. 4 (2007) 143–165. [Google Scholar]
- R. Ignat, A survey of some new results in ferromagnetic thin films. Séminaire: Équations aux Dérivées Partielles. 2007–2008, Exp. No. VI, 21 pp., Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau (2009). [Google Scholar]
- R. Ignat and F. Otto, A compactness result for Landau state in thin-film micromagnetics. Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011) 247–282. [Google Scholar]
- S.-W. Jung, W. Kim, T.-D. Lee, K.-J. Lee and H.-W. Lee, Current-induced domain wall motion in a nanowire with perpendicular magnetic anisotropy. Appl. Phys. Lett. 92 (2008) 202508. [Google Scholar]
- H. Knüpfer, C.B. Muratov and F. Nolte, Magnetic domains in thin ferromagnetic films with strong perpendicular anisotropy. Arch. Ration. Mech. Anal. 232 (2019) 727–761. [MathSciNet] [Google Scholar]
- R. Kohn and V. Slastikov, Effective dynamics for ferromagnetic thin films: a rigorous justification. Proc. R. Soc. A 461 (2005) 143–154. [Google Scholar]
- S. Labbé, Y. Privat and E. Trélat, Stability properties of steady-states for a network of ferromagnetic nanowires. J. Differ. Equ. 253 (2012) 1709–1728. [Google Scholar]
- C. Melcher, Thin-film limits for Landau–Lifshitz–Gilbert equations. SIAM J. Math. Anal. 42 (2010) 519–537. [CrossRef] [MathSciNet] [Google Scholar]
- G. Nahrwold, L. Bocklage, J.M. Scholtyssek, T. Matsuyama, B. Krüger, U. Merkt and G. Meier, Current-induced domain-wall depinning in curved Permalloy nanowires. J. Appl. Phys. 105 (2009) 07D511. [Google Scholar]
- Y. Nakatani, A. Thiaville and J. Miltat, Faster magnetic walls in rough wires. Nat. Mater. 2 (2003) 521–523. [Google Scholar]
- S.P. Parkin, M. Hayashi and L. Thomas, Magnetic domain-wall racetrack memory. Science 320 (2008) 190–194. [CrossRef] [PubMed] [Google Scholar]
- Y. Privat and E. Trélat, Control and stabilization of steady-states in a finite-length ferromagnetic nanowire. ESAIM Control Optim. Calc. Var. 21 (2015) 301–323. [MathSciNet] [Google Scholar]
- O.V. Pylypovskyi, D.D. Sheka, V.P. Kravchuk, K.V. Yershov, D. Makarov and Y. Gaididei, Rashba torque driven domain wall motion in magnetic helices. Sci. Rep. 6 (2016) 23316. [CrossRef] [Google Scholar]
- T. Rivière and S. Serfaty, Limiting domain wall energy for a problem related to micromagnetics. Comm. Pure Appl. Math. 54 (2001) 294–338. [MathSciNet] [Google Scholar]
- D. Sanchez, Behaviour of the Landau–Lifschitz equation in a ferromagnetic wire. Math. Methods Appl. Sci. 32 (2009) 167–205. [CrossRef] [MathSciNet] [Google Scholar]
- V. Slatiskov and C. Sonnenberg, Reduced models for ferromagnetic nanowires. IMA J. Appl. Math. 77 (2012) 220–235. [CrossRef] [MathSciNet] [Google Scholar]
- M. Tanase, D.M. Silevitch, C.L. Chien and D.H. Reich, Magneto-transport properties of bent ferromagnetic nanowires. J. Appl. Phys. 93 (2003) 7616. [Google Scholar]
- A. Thiaville, Y. Nakatani, J. Miltat and Y. Suzuki, Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69 (2005) 990. [Google Scholar]
- M. Yan, C. Andreas, A. Kákay, F. García-Sánchez and R. Hertel, Fast domain wall dynamics in magnetic nanotubes: suppression of Walker breakdown and Cherenkov-like spin wave emission. Appl. Phys. Lett. 99 (2011) 122505. [Google Scholar]
- K.V. Yershov, V.P. Kravchuk, D.S. Sheka and Y. Gadidei, Curvature and torsion effects in spin current driven domain wall motion. Phys. Rev. B 93 (2016) 094418. [Google Scholar]
- H.Y. Yuan and X.R. Wang, Domain wall pinning in notched nanowires. Phys. Rev. B 89 (2014) 054423. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.