Open Access
| Issue |
ESAIM: M2AN
Volume 59, Number 5, September-October 2025
|
|
|---|---|---|
| Page(s) | 2763 - 2788 | |
| DOI | https://doi.org/10.1051/m2an/2025074 | |
| Published online | 15 October 2025 | |
- R. Adam, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
- T. Arbogast, M. Juntunen, J. Pool and M.F. Wheeler, A discontinuous Galerkin method for two-phase flow in a porous medium enforcing H(div) velocity and continuous capillary pressure. Comput. Geosci. 17 (2013) 1055–1078. [Google Scholar]
- S. Bartels, M. Jensen and R. Müller, Discontinuous Galerkin finite element convergence for incompressible miscible displacement problems of low regularity. SIAM J. Numer. Anal. 47 (2009) 3720–3743. [Google Scholar]
- P. Bastian, A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 18 (2014) 779–796. [Google Scholar]
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (2008). [Google Scholar]
- A. Buffa and C. Ortner, Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 29 (2009) 827–855. [CrossRef] [MathSciNet] [Google Scholar]
- C. Cancès, I.S. Pop and M. Vohralík, An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow. Math. Comput. 83 (2014) 153–188. [Google Scholar]
- X. Cao, S.F. Nemadjieu and I.S. Pop, Convergence of an MPFA finite volume scheme for a two-phase porous media flow model with dynamic capillary. IMA J. Numer. Anal. 39 (2019) 512–544. [Google Scholar]
- A. Cesmelioglu, B. Cockburn and W. Qiu, Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. Math. Comput. 86 (2017) 1643–1670. [Google Scholar]
- Z. Chen, Degenerate two-phase incompressible flow I. Existence, uniqueness and regularity of a weak solution. J. Differ. Equ. 171 (2001) 203–232. [Google Scholar]
- Z. Chen and R.E. Ewing, Degenerate two-phase incompressible flow III. Sharp error estimates. Numer. Math. 90 (2011) 215–240. [Google Scholar]
- Z. Chen, G. Huan and Y. Ma, Computational Methods for Multiphase Flows in Porous Media. SIAM (2006). [Google Scholar]
- H. Chen, J. Kou, S. Sun and T. Zhang, Fully mass-conservative IMPES schemes for incompressible two-phase flow in porous media. Comput. Methods Appl. Mech. Eng. 350 (2019) 641–663. [Google Scholar]
- K.H. Coats, A note on IMPES and some IMPES-based simulation models. Presented at the 15th Symposium on Reservoir Simulation, Houston, TX (1999). [Google Scholar]
- B. Cockburn, J. Gopalakrishman and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. [CrossRef] [MathSciNet] [Google Scholar]
- A. Costa-Solé, E. Ruiz-Gironés and J. Sarrate, High-order hybridizable discontinuous Galerkin formulation with fully implicit temporal schemes for the simulation of two-phase flow through porous meida. Int. J. Numer. Methods Eng. 122 (2021) 3583–3612. [Google Scholar]
- D.A. Di Pietro and J. Droniou, A hybrid high-order method for Leray–Lions elliptic equations on general meshes. Math. Comput. 86 (2017) 2159–2191. [Google Scholar]
- D.A. Di Pietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comput. 79 (2010) 1303–1330. [CrossRef] [Google Scholar]
- D.A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283 (2015) 1–21. [Google Scholar]
- D.A. Di Pietro and S. Krell, A hybrid high-order method for the steady incompressible Navier–Stokes problem. J. Sci. Comput. 74 (2018) 1677–1705. [Google Scholar]
- P. Doktor and A. Ženíšek, The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions. Appl. Math. 51 (2006) 517–547. [Google Scholar]
- J. Droniou, R. Eymard, A. Prignet and K.S. Talbot, Unified convergence analysis of numerical schemes for a miscible displacement problem. Found. Comput. Math. 19 (2019) 333–374. [Google Scholar]
- L.J. Durlofsky, A triangle based mixed finite element-find volume technique for modeling two phase flow through porous media. J. Comput. Phys. 105 (1993) 252–266. [Google Scholar]
- Y. Epshteyn and B. Rivière, Fully implicit discontinuous finite element methods for two-phase flow. Appl. Numer. Math. 57 (2007) 383–401. [Google Scholar]
- Y. Epshteyn and B. Rivière, Analysis of hp discontinuous Galerkin methods for incompressible two-phase flow. J. Comput. Appl. Math. 225 (2009) 487–509. [Google Scholar]
- A. Ern, I. Mozolevski and L. Schuh, Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Comput. Methods Appl. Mech. Eng. 199 (2010) 1491–1501. [Google Scholar]
- M.S. Fabien, M.G. Knepley and B.M. Rivière, A hybridizable discontinuous Galerkin method for two-phase flow in heterogeneous porous media. Int. J. Numer. Methods Eng. 116 (2018) 161–177. [Google Scholar]
- R. Fučík and J. Mikyška, Discontinuous Galerkin and mixed-hybrid finite element approach to two-phase flow in heterogeneous porous media with different capillary. Proc. Comput. Sci. 4 (2011) 908–917. [Google Scholar]
- J. Guzmán, Pointwise error estimates for discontinuous Galerkin methods with lifting operators for elliptic problems. Math. Comput. 75 (2006) 1067–1085. [Google Scholar]
- H. Hoteit and A. Firoozabadi, Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures. Adv. Water Res. 31 (2008) 56–73. [Google Scholar]
- M. Jamei and H. Ghafouri, A novel discontinuous Galerkin model for two phase flow in porous media using an improved IMPES method. Int. J. Numer. Methods Heat Fluid Flow 26 (2013) 284–306. [Google Scholar]
- S. Karpinski and I.S. Pop, Analysis of an interior penalty discontinuous Galerkin scheme for two phase flow in porous media with dynamic capillary effects. Numer. Math. 136 (2017) 249–286. [Google Scholar]
- C.E. Kenig and Z. Shen, Homogenization of elliptic boundary value problems in Lipschitz domains. Math. Ann. 350 (2011) 867–917. [Google Scholar]
- F. Kikuchi, Rellich-type discrete compactness for some discontinuous Galerkin FEM. Jpn. J. Indust. Appl. Math. 29 (2012) 269–288. [Google Scholar]
- K.L.A. Kirk, A. Cesmelioˇglu and S. Rhebergen, Convergence to weak solutions of a space-time hybridized discontinuous Galerkin method for the incompressible Navier–Stokes equations. Math. Comput. 92 (2023) 147–174. [Google Scholar]
- W. Klieber and B. Riviere, Adaptive simulations of two-phase flow by discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 196 (2006) 404–419. [Google Scholar]
- J. Kou and S. Sun, Convergence of discontinuous Galerkin methods for incompressible two-phase flow in heterogeneous media. SIAM J. Numer. Anal. 51 (2013) 3280–3306. [Google Scholar]
- J. Kou and S. Sun, Analysis of a combined mixed finite element and discontinuous Galerkin method for incompressible two-phase flow in porous media. Math. Meth. Appl. Sci. 37 (2014) 962–982. [Google Scholar]
- M.G. Larson and A. Møalqvist, A posteriori error estimates for mixed finite element approximations of elliptic problems. Numer. Math. 108 (2008) 487–500. [CrossRef] [MathSciNet] [Google Scholar]
- H. Leng and H. Chen, Adaptive interior penalty hybridized discontinuous Galerkin methods for Darcy flow in fractured porous media. IMA J. Numer. Anal. 44 (2024) 2165–2197. [Google Scholar]
- H. Leng and H. Chen, An adaptive hybridizable discontinuous Galerkin method for Darcy-Forchheimer flow in fractured porous media. Math. Models Methods Appl. Sci. 34 (2024) 2497–2536. [Google Scholar]
- J. Li, B.M. Rivière and N.J. Walkington, Convergence of a high order method in time and space for the miscible displacement equations. ESAIM: M2AN 49 (2015) 953–976. [CrossRef] [EDP Sciences] [Google Scholar]
- A. Michel, A finite volume scheme for two-phase immiscible flow in porous media. SIAM J. Numer. Anal. 41 (2003) 1301–1317. [Google Scholar]
- D. Nayagum, G. Sch¨afer and R. Mosé, Modelling two-phase incompressible flow in porous media using mixed hybrid and discontinuous finite elements. Comput. Geosci. 8 (2004) 49–73. [Google Scholar]
- N. Nguyen, J. Peraire and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for linear convection diffusion equations. J. Comput. Phys. 228 (2009) 3232–3254. [CrossRef] [MathSciNet] [Google Scholar]
- V. Reichenberger, H. Jakobs, P. Bastian and R. Helmig, A mixed-dimensional finite volume method for two-phase flow in fractured porous media. Adv. Water Res. 29 (2006) 1020–1036. [CrossRef] [Google Scholar]
- B.M. Rivière and N.J. Walkington, Convergence of a discontinuous Galerkin method for the miscible displacement equation under low regularity. SIAM J. Numer. Anal. 49 (2011) 1085–1110. [CrossRef] [MathSciNet] [Google Scholar]
- T. Roubíček, Nonlinear Partial Differential Equations with Applications. Birkh¨auser, Berlin (2005). [Google Scholar]
- F. Tröltzsch, Optimal Control of Partial Differential Equations, Theory, Methods and Applications. American Mathematical Society, Providence, Rhode Island (2010). [Google Scholar]
- N.J. Walkington, Compactness properties of the DG and CG time stepping schemes for parabolic equations. SIAM J. Numer. Anal. 47 (2010) 4680–4710. [Google Scholar]
- E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems. Springer-Verlag, New-York (1985). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
