Issue |
ESAIM: M2AN
Volume 33, Number 1, January Fabruary 1999
|
|
---|---|---|
Page(s) | 191 - 207 | |
DOI | https://doi.org/10.1051/m2an:1999111 | |
Published online | 15 August 2002 |
Approximation of solution branches for semilinear bifurcation problems
1
Laboratoire LMC-IMAG, B.P. 53, 38041
Grenoble Cedex 9, France.
2
Present address: Laboratoire LMCA, Université de La Rochelle, avenue Marillac, 17042 La Rochelle Cedex 1, France.
Received:
28
May
1997
Revised:
25
February
1998
This note deals with the approximation, by a P1 finite element method with numerical integration, of solution curves of a semilinear problem. Because of both mixed boundary conditions and geometrical properties of the domain, some of the solutions do not belong to H2. So, classical results for convergence lead to poor estimates. We show how to improve such estimates with the use of weighted Sobolev spaces together with a mesh “a priori adapted” to the singularity. For the H1 or L2-norms, we achieve optimal results.
Résumé
Cet article concerne l'approximation, par une méthode d'éléments finis avec intégration numérique, des branches de solutions d'un problème semi-linéaire. En raison des conditions aux limites mêlées et de la géométrie du domaine, les solutions ne sont pas dans l'espace H2. Ce qui, classiquement, entraine de mauvais taux de convergence des branches de solutions approchées vers les branches de solutions exactes. Nous montrons comment l'utilisation d'un maillage “adapté a priori” à la singularité des solutions permet d'obtenir des taux de convergence optimaux dans les normes H1 et L2.
Mathematics Subject Classification: 65N12 / 65N25 / 35J60
© EDP Sciences, SMAI, 1999
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.