Free Access
Issue
ESAIM: M2AN
Volume 46, Number 3, May-June 2012
Special volume in honor of Professor David Gottlieb
Page(s) 545 - 557
DOI https://doi.org/10.1051/m2an/2011050
Published online 11 January 2012
  1. M. Ainsworth, Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42 (2004) 553–575. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Ainsworth, Dispersive and dissipative behavior of high-order discontinuous Galerkin finite element methods. J. Comput. Phys. 198 (2004) 106–130. [CrossRef] [Google Scholar]
  3. D. Appelö and T. Hagstrom, Experiments with Hermite methods for simulating compressible flows : Runge-Kutta time-stepping and absorbing layers, in 13th AIAA/CEAS Aeroacoustics Conference. AIAA (2007). [Google Scholar]
  4. G. Birkhoff, M. Schultz and R. Varga, Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math. 11 (1968) 232–256. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities. Springer-Verlag, New York (1995). [Google Scholar]
  6. P. Davis, Interpolation and Approximation. Dover Publications, New York (1975). [Google Scholar]
  7. L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz and A. Zdunek, Computing with hp-Adaptive Finite Elements. Applied Mathematics & Nonlinear Science, Chapman & Hall/CRC, Boca Raton (2007). [Google Scholar]
  8. C. Dodson, A high-order Hermite compressible Navier-Stokes solver. Master’s thesis, The University of New Mexico (2003). [Google Scholar]
  9. B. Fornberg, On a Fourier method for the integration of hyperbolic equations. SIAM J. Numer. Anal. 12 (1975) 509–528. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Goodrich, T. Hagstrom and J. Lorenz, Hermite methods for hyperbolic initial-boundary value problems. Math. Comput. 75 (2006) 595–630. [Google Scholar]
  11. D. Gottlieb and S.A. Orszag, Numerical Analysis of Spectral Methods. SIAM, Philadelphia (1977). [Google Scholar]
  12. D. Gottlieb and E. Tadmor, The CFL condition for spectral approximations to hyperbolic initial-boundary value problems. Math. Comput. 56 (1991) 565–588. [CrossRef] [Google Scholar]
  13. A. Griewank, Evaluating Derivatives : Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia (2000). [Google Scholar]
  14. E. Hairer, C. Lubich and M. Schlichte, Fast numerical solution of nonlinear Volterra convolutional equations. SIAM J. Sci. Statist. Comput. 6 (1985) 532–541. [CrossRef] [MathSciNet] [Google Scholar]
  15. G.-S. Jiang and E. Tadmor, Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19 (1998) 1892–1917. [CrossRef] [MathSciNet] [Google Scholar]
  16. H.-O. Kreiss and J. Oliger, Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24 (1972) 199–215. [CrossRef] [MathSciNet] [Google Scholar]
  17. F. Lörcher, G. Gassner and C.-D. Munz, An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations. J. Comput. Phys. 227 (2008) 5649–5670. [CrossRef] [Google Scholar]
  18. T. Warburton and T. Hagstrom, Taming the CFL number for discontinuous Galerkin methods on structured meshes. SIAM J. Numer. Anal. 46 (2008) 3151–3180. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Weideman and L. Trefethen, The eigenvalues of second-order differentiation matrices. SIAM J. Numer. Anal. 25 (1988) 1279–1298. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you